Combustion in inert porous media has been extensively investigated due to the many engineering applications and demand for developing high efficiency power production devices. The growing use of efficient radiant burners can be encountered in the power and process industries and, as such, proper mathematical models of flow, heat and mass transfer in porous media under combustion can benefit the development of such engineering equipment. This paper proposes a new mathematical model for computing temperature and flow variables inside a porous burner. A new concept called “double-decomposition” is used to represent all transported variables. A set of governing equations is presented and the numerical solution method proposed is discussed. Computations are carried out for a test case considering a simple one-energy equation model and one-step reaction rates. Simulations are presented comparing the inclusion of turbulence and radiation transfer in the model. It is shown that for high Re flows, inclusion of turbulence is as important as modeling radiation for obtaining reliable temperature distribution within the porous material.
Skip Nav Destination
ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference
July 8–12, 2007
Vancouver, British Columbia, Canada
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-4276-2
PROCEEDINGS PAPER
The Effect of Radiation and Turbulence on Heat Transport in Combustion in Porous Media Available to Purchase
Marcelo J. S. de Lemos
Marcelo J. S. de Lemos
Instituto Technolo´gico de Aerona´utica, Sa˜o Jose´ dos Campos, SP, Brazil
Search for other works by this author on:
Marcelo J. S. de Lemos
Instituto Technolo´gico de Aerona´utica, Sa˜o Jose´ dos Campos, SP, Brazil
Paper No:
HT2007-32005, pp. 77-85; 9 pages
Published Online:
August 24, 2009
Citation
de Lemos, MJS. "The Effect of Radiation and Turbulence on Heat Transport in Combustion in Porous Media." Proceedings of the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, Volume 3. Vancouver, British Columbia, Canada. July 8–12, 2007. pp. 77-85. ASME. https://doi.org/10.1115/HT2007-32005
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
J. Turbomach (January,2000)
Quasidimensional Modeling of Diesel Combustion Using Detailed Chemical Kinetics
J. Eng. Gas Turbines Power (August,2017)
The Passing Behaviors of Vapor through Cloth
J. Heat Transfer (August,2006)
Related Chapters
Physiology of Human Power Generation
Design of Human Powered Vehicles
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
CFD Simulations of a Mixed-flow Pump Using Various Turbulence Models
Mixed-flow Pumps: Modeling, Simulation, and Measurements