Cryosurgery is a surgical technique using low temperature cryogen to achieve selective tissue destruction by freezing. During cryosurgery, the cryoprobe, which is usually cooled by inner circulation of liquid nitrogen (LN2), is inserted into the targeted tumor tissue. The tissue surrounding the cryoprobe is then cooled down to sub-zero temperature and subsequently frozen. Extensive studies have been conducted to understand the mechanism of tissue injury, and various numerical models have been developed to predict the thermal history of the targeted tissues during cryosurgery. Most of the existing models, however, focused on the tissue freezing and applied simplified thermal boundary conditions at the interface between cryoprobe and surrounding tissue, e.g. a constant temperature or a constant heat flux. This paper presents a conjugate model for cryosurgery. The new model treats with both tissue freezing outside of the cryoprobe and turbulent convective heat transfer of LN2 inside the cryoprobe. The thermal condition along the cryoprobe surface is then part of the solution, instead of a presumption. The turbulent convection of single phase LN2 inside the cryoprobe is described by a Realizable κ-ε model, while the Pennes equation is used to address the heat transfer within the hepatic tissue. An apparent heat capacity method is used to deal with tissue freezing. As an example, the model is used to simulate the hepatic cryosurgery with a single cryoprobe. The model predicts a dynamic, non-unform surface temperature along the cryoprobe surface, which shows a large effect on the ice ball formation outside the cryoprobe. Results are also presented to illustrate the effect of the flow condition and the cryoprobe design on the interface thermal condition in cryosurgery.
Skip Nav Destination
ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference
July 8–12, 2007
Vancouver, British Columbia, Canada
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-4276-2
PROCEEDINGS PAPER
A Conjugate Model for Hepatic Cancer Cryosurgery Using a Liquid-Nitrogen Cryorobe
G.-X. Wang
G.-X. Wang
University of Akron, Akron, OH
Search for other works by this author on:
Feng Sun
University of Akron, Akron, OH
G.-X. Wang
University of Akron, Akron, OH
Paper No:
HT2007-32009, pp. 25-32; 8 pages
Published Online:
August 24, 2009
Citation
Sun, F, & Wang, G. "A Conjugate Model for Hepatic Cancer Cryosurgery Using a Liquid-Nitrogen Cryorobe." Proceedings of the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, Volume 3. Vancouver, British Columbia, Canada. July 8–12, 2007. pp. 25-32. ASME. https://doi.org/10.1115/HT2007-32009
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Effect of Microscale Mass Transport and Phase Change on Numerical Prediction of Freezing in Biological Tissues
J. Heat Transfer (April,2002)
Numerical Simulation for Heat Transfer in Prostate Cancer Cryosurgery
J Biomech Eng (April,2005)
Adjuvant Approaches to Enhance Cryosurgery
J Biomech Eng (July,2009)
Related Chapters
Experimental Studies
Nanoparticles and Brain Tumor Treatment
Introduction
Nanoparticles and Brain Tumor Treatment
Conclusions
Nanoparticles and Brain Tumor Treatment