This paper presents fluid flow and heat transfer study of a high temperature heat exchanger and chemical decomposer. The decomposer will be used as a part of the plant for hydrogen production. The decomposer is manufactured using fused ceramic layers that allow creation of channels with dimensions below one millimeter. The main purpose for this study is to increase thermal performance of the decomposer which can help to intensify sulfuric acid decomposition rate. Effects of using various channel geometries of the decomposer on the pressure drop are studied as well. A three-dimensional computational model is developed for the investigation of fluid flow and heat transfer in the decomposer. Several different geometries of the decomposer channels such as straight channels, ribbed ground channels, hexagonal channels, and diamond-shaped channels are examined. Based on results of the calculation, the recommendations for the improved design of the decomposer are obtained.

This content is only available via PDF.
You do not currently have access to this content.