This paper presents the analytical solution of the heat conduction across a corrugated thermal interface material with rectangular straight fin arrangement. Domain decomposition and eigenfunction expansion method were used to study the thermal diffusion in such geometry for the first time. The temperature field solved from the analytical method agrees well with FEM simulation. The total heat transfer rate across the corrugated interface and thermal boundary resistance were derived analytically also. Results have shown that the effective thermal resistance across the interface can be significantly reduced with the corrugated TIM geometry. The analytical solution in the paper can provide insight into geometry effect on the heat transfer enhancement, and is a very useful complement to experimental work and numerical simulation in designing high-performance corrugated thermal interface.

This content is only available via PDF.
You do not currently have access to this content.