Temperature plays a significant role in determining the dynamics of flow on the nanoscale. This is particularly important with carbon nanotubes, which are likely to form an integral part of future nanofluidic and biological devices. We demonstrate through first-principles density-functional theory (DFT) that the energies and temperatures at which individual water molecules are able to enter the nanotube depends very strongly on their orientation. This has a number of implications for the flow of water through the nanotube at different temperatures and densities, particularly when considering low-density water vapour.

This content is only available via PDF.
You do not currently have access to this content.