The temperature rise that occurs due to frictional heating under the turning fastener head during the tightening process of bolted joints can have a significant effect on surface and thread wear and galling. The subject has received little attention in the scientific literature. In the present study, the spatial and temporal temperature rise in a bolt during the tightening process are numerically investigated for a variety of sliding and loading conditions using finite difference methods. The effect of tightening speed, angle of turn, and frictional energy input is numerically investigated. Tightening speeds were varied between 1 RPM and 3000 RPM and the angle of turn was varied between 15 and 720 degrees past free spinning; this range of turn simulates joint stiffness variation from very hard to very soft joints. Significant temperature rises of the bolt underhead were observed for higher tightening speeds and the potential for localized melting or near-melting temperatures was shown. In the case of lower tightening speeds, the temperature rise was not as dramatic, but temperature increases are then observed along the length of the shank, showing the possibility of contributing to thermally induced galling between the threads. Due to the temperature variations observed in most cases in the underhead and along the bolt shank, this study indicates that such thermal effects should be considered when modeling the wear of bolted joints, particularly in cases involving larger tightening speeds or softer joints.
Skip Nav Destination
ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference
July 8–12, 2007
Vancouver, British Columbia, Canada
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-4274-6
PROCEEDINGS PAPER
A Numerical Investigation of Bolt Underhead Temperature Evolution During Tightening
Laila Guessous,
Laila Guessous
Oakland University, Rochester, MI
Search for other works by this author on:
Gary Barber,
Gary Barber
Oakland University, Rochester, MI
Search for other works by this author on:
Sayed Nassar
Sayed Nassar
Oakland University, Rochester, MI
Search for other works by this author on:
Laila Guessous
Oakland University, Rochester, MI
Gary Barber
Oakland University, Rochester, MI
Qian Zou
Oakland University, Rochester, MI
Sayed Nassar
Oakland University, Rochester, MI
Paper No:
HT2007-32961, pp. 443-451; 9 pages
Published Online:
August 24, 2009
Citation
Guessous, L, Barber, G, Zou, Q, & Nassar, S. "A Numerical Investigation of Bolt Underhead Temperature Evolution During Tightening." Proceedings of the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference, Volume 1. Vancouver, British Columbia, Canada. July 8–12, 2007. pp. 443-451. ASME. https://doi.org/10.1115/HT2007-32961
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Load Redistribution on Lead Screw Threads Wearing Under Varying Operating Conditions
J. Tribol (October,2008)
Thread Friction Torque in Bolted Joints
J. Pressure Vessel Technol (November,2005)
Finite Element Modeling of Self-Loosening of Bolted Joints
J. Mech. Des (February,2007)
Related Chapters
Understanding the Problem
Design and Application of the Worm Gear
A Utility Perspective of Wind Energy
Wind Turbine Technology: Fundamental Concepts in Wind Turbine Engineering, Second Edition
On the Evaluation of Thermal and Mechanical Factors in Low-Speed Sliding
Tribology of Mechanical Systems: A Guide to Present and Future Technologies