Forced convection transient heat transfer for helium gas at various periods of exponentially increase of heat input to a horizontal plate (ribbon) was experimentally and theoretically studied. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over a horizontal plate under wide experimental conditions. The gas flow velocities ranged from 4 to 10 m/s, the gas temperatures ranged from 313 to 353 K, and the periods of heat generation rate, τ, ranged from 46 ms to 17 s. The pressures were from 400 to 800 kPa. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period longer than about 1 s, and it becomes higher for the period shorter than around 1 s. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was obtained that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The values of numerical solutions for surface temperature and heat flux at the velocity of 6 m/s agree well with the experimental data, though they show some differences at other velocities.

This content is only available via PDF.
You do not currently have access to this content.