Numerical simulation is carried out to study a 2D evaporating meniscus formed on a moving wall. The complete Navier-Stokes equations along with continuity and energy equations are solved. The liquid vapor interface is captured using the level set technique. The meniscus is fed with saturated water from the top whereas the bottom wall is maintained at a higher temperature and is also imparted with a velocity. The meniscus attains a steady shape when all the incoming liquid gets evaporated due to heat transfer from the wall. The advancing and receding contact region of the meniscus are provided with different contact angles. Results indicate that the average heat flux at the meniscus base increases with increase in contact angle. The primary reason for heat transfer from the wall is attributed to the liquid circulation inside the meniscus and the corresponding transient conduction from the wall. As the meniscus contact angle increases the liquid circulation is found to disturb the thermal boundary layer more effectively thereby resulting in increased wall heat transfer. The effect of contact angle on wall heat transfer to the moving and evaporating meniscus is compared to partial nucleate pool boiling.

This content is only available via PDF.
You do not currently have access to this content.