Core-shell heterostructures could potentially become the building blocks of nanotechnology for electronic and optoelectronic applications. The increased surface or interface area will decrease the thermal conductivity of such nanostructures and impose challenges for the thermal management such devices. In the mean time, the decreased thermal conductivity might benefit the thermoelectric conversion efficiency. In this paper, a generic model is established to study phonon transport in core-shell nanowire structures in the longitudinal direction using the phonon Boltzmann equation. The model can be used to simulate a variety of nanostructures, including nanowires and nanocomposites by changing some of the input parameters. We first report the dependence of the thermal conductivity on the surface conditions and the core-shell geometry for silicon core - germanium shell and tubular silicon nanowires. When the scattering at the outer shell surface in the generic model is assumed to be totally specular, the core-shell nanostructure resembles a simulation unit cell of periodic two-dimensional (2-D) nanocomposites. Thermal conductivity of nanowire composites and cylindrical nanoporous material in longitudinal direction is thus predicted as a function of the size of the nanowires and nanopores, and the volumetric fraction of the constituent materials. Results of this study can be used to direct the development of high efficiency thermoelectric materials.

This content is only available via PDF.
You do not currently have access to this content.