This work presents the in-plane thermal conductivity data for pure as well as boron (1.6 × 1021 /cm3), arsenic (2.3 × 1020 /cm3) and phosphorus (2.3 × 10 20/cm3) doped silicon layers of thickness 30 and 50 nm at high temperature. The steady-state Joule heating and electrical resistance thermometry is used to measure lateral thermal conductivity of suspended silicon layers. Thermal conductivity data for pure and lightly doped single crystalline silicon layers can be interpreted using thermal conductivity integral and relaxation time approximation for phonon-boundary and phonon-impurity scattering rates. No additional fitting parameters are used in this work; in contrast with previous studies that required an unusually large phonon-impurity scattering coefficient to match the predictions to the thermal conductivity data for bulk doped silicon.   This paper was also originally published as part of the Proceedings of the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems.

This content is only available via PDF.
You do not currently have access to this content.