The method of fundamental solutions (MFS) is first proposed in 1964 by Kupradze and theoretical basis of this method is constructed at the end of 1980’s. As a meshless method, no domain meshing is required for MFS. Fundamental solutions are used to solve problems without coping with the singularity on the boundary because of the fictitious boundary defined containing the domain of the problem. In this paper effectiveness of the MFS will be introduced by two test problem for the homogeneous and inhomogeneous modified helmholtz equations. In-homogeneous terms are approximated by using the method of particular solutions through the dual reciprocity method. The conduction heat transfer problem is defined and transformed to the corresponding elliptic partial differential equation by using finite difference and the method of lines method which gives an inhomogeneous helmholtz equation. Then the problem is solved iteratively by using the MFS. Two test problem are solved by both the finite element method (FEM) and MFS and compared in the figures. It can be seen that as a meshless method, MFS gives very good results for the test problems. The thermal shock problem presented here also gives accurate solutions by using MFS and agrees well with the FEM solution.
Skip Nav Destination
ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
July 17–22, 2005
San Francisco, California, USA
Conference Sponsors:
- Heat Transfer Division and Electronic and Photonic Packaging Division
ISBN:
0-7918-4733-0
PROCEEDINGS PAPER
Conduction Heat Transfer Problem Solution Using the Method of Fundamental Solutions With the Dual Reciprocity Method
Cengiz Erdo¨nmez,
Cengiz Erdo¨nmez
Istanbul Technical University, Istanbul, Turkey
Search for other works by this author on:
Hasan Saygın
Hasan Saygın
Istanbul Technical University, Istanbul, Turkey
Search for other works by this author on:
Cengiz Erdo¨nmez
Istanbul Technical University, Istanbul, Turkey
Hasan Saygın
Istanbul Technical University, Istanbul, Turkey
Paper No:
HT2005-72566, pp. 853-858; 6 pages
Published Online:
March 9, 2009
Citation
Erdo¨nmez, C, & Saygın, H. "Conduction Heat Transfer Problem Solution Using the Method of Fundamental Solutions With the Dual Reciprocity Method." Proceedings of the ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. Heat Transfer: Volume 3. San Francisco, California, USA. July 17–22, 2005. pp. 853-858. ASME. https://doi.org/10.1115/HT2005-72566
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
A Multipoint Flux Approximation of the Steady-State Heat Conduction Equation in Anisotropic Media
J. Heat Transfer (April,2013)
Inverse Determination of the Local Heat Transfer Coefficients for
Nucleate Boiling on a Horizontal Cylinder
J. Heat Transfer (December,2003)
Transport Phenomena: Equations and Numerical Solutions
Appl. Mech. Rev (July,2001)
Related Chapters
Energy Balance for a Swimming Pool
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life
Baking Pizza by Infrared Radiation and Conduction Heat Transfers and Mass Transfer in Unsteady State
Electromagnetic Waves and Heat Transfer: Sensitivites to Governing Variables in Everyday Life