This work supports new gas turbine designs for improved performance by evaluating sealing flow effects in a cascade representative of a contoured first stage stator passage. Contouring accelerates the flow, reducing the thickness of the endwall inlet boundary layer to the turbine stage and reducing the strength of secondary flows within the passage. Injected flows, used to seal gaps and cool surfaces, may affect endwall boundary layers, increase secondary flows and possibly create additional vortex structures in the passage. The present paper documents injected flow effects on the endwall heat transfer within a passage with one contoured and one straight endwall. The paper discusses heat transfer distributions measured with different leakage flow rates. In particular, leakage is from the gap between the combustor and turbine sections and from the gap at the assembly joint on the vane platform between two vanes.

This content is only available via PDF.
You do not currently have access to this content.