In order to improve a wear resistance of aluminium alloy, we proposed a diode laser cladding on the surface of a A5052 aluminium alloy. Firstly, an applicability of diode laser to laser cladding was evaluated. In this result, application of diode laser made it possible to obtain stable beads in low heat input compared with CO2 laser. According to the increase in aluminium content in the obtained clad layer, the microstructure of the clad layer changed as γ (8∼20%) → γ + α (10∼30%) → Fe3Al (30%∼). At the interface between the clad layer and the aluminium alloy substrate, the reaction layer consisting of Fe2Al5 and FeAl3 formed. In the abrasion wear the obtained clad layers exhibited a higher wear resistance compared with the aluminium alloy.

This content is only available via PDF.
You do not currently have access to this content.