We demonstrate the multiscale analysis of the transport phenomena in a low pressure reactor. In this method, the macroscopic phenomena such as the temperature and the density distribution are related to the microscopic electronic structure of atom/molecule. By connecting the different scales with physical models, the macroscopic properties are obtained starting from the first principle calculation without any empirical parameters. Here, we take the silicon epitaxial growth from a gas mixture of silane and hydrogen as an example. As the first step of this method, we calculated the intermolecular potential energy of SiH4/H2 using the ab initio molecular orbital calculations. Then, an analytical pair potential model was constructed to reproduce the potential energy surface obtained from the ab initio calculation. We have confirmed the validation of the potential model by comparing the experimental data of the transport properties with the molecular dynamics simulation using the potential model. Subsequently, the binary molecular collision models were constructed by the classical trajectory calculation using the potential model as the second step of the multiscale analysis. The trajectory calculations were conducted for the various combinations of the initial translational and the rotational energy. Through the statistical analysis of the trajectory calculations, the elastic/inelastic collision cross section and the scattering angle model were constructed. Finally, the direct simulation Monte Carlo simulation of flow field in a low parssure reactor was executed. The thin film thickness distribution was also investigated and discussed. This method was extended to analyze the surface reaction, which is an ongoing research work and only the current progress is reported here.

This content is only available via PDF.
You do not currently have access to this content.