This paper makes use of a new methodology for heat transfer increase through flow structures modifications. Intended to help railway designers in handling cooling issues, it is applied to improve the roof-mounted equipment design of a modern railway coach, namely the CORADIA TER 2N NG produced by the ALSTOM Transport company. The brake resistor, a key equipment in charge of dissipating the train kinetic energy as heat into the surrounding air during braking phases, has been particularly considered. To do so, a simple model including a heated obstacle inside a three-sided lead-driven cavity is used, and simple geometry variations are suggested. Their impact on heat transfer is then estimated through numerical simulations while experimental tests validate the results obtained.

This content is only available via PDF.
You do not currently have access to this content.