Subcooled boiling flow was simulated by combining the two-fluid model of the CFX-4.4 code and a Lagrangian bubble-tracking model. At present, both models are coupled “off-line” via the local bubble Sauter diameter. The two-fluid model simulation with the CFX-4.4 code provides local values of turbulent kinetic energy field of the liquid phase, which is used as an input for the bubble-tracking model. In the bubble-tracking model, vapour is distributed in the liquid in the form of individually tracked bubbles. The result of the Lagrangian simulation is a non-homogeneous distribution of local Sauter diameter, which is used in the two-fluid model to predict the interfacial forces and interfacial transfer rates of mass and heat transfer. The coupled approach requires a few iterations to obtain a converged solution. The results of the proposed approach were validated against boiling flow experiments from the literature. A good agreement between measured and calculated radial profiles of void fraction and bubble diameter was obtained.

This content is only available via PDF.
You do not currently have access to this content.