A Non Equilibrium Molecular Dynamics (NEMD) simulation has been used to calculate the temperature distribution in the substrate side of a nanometer scale point contact on a planar silicon substrate with different doping concentrations and contact radii. The size of the non-uniform temperature zone was found to approach the average nearest-neighbor distance of impurity dopants when the contact radius was reduced below this distance. At a contact radius of 0.5 nm, the calculated spreading thermal resistance at the nano-point contact agrees with those obtained using two phonon transport models. At a contact radius between 1 nm and 6 nm, however, the spreading resistance from the NEMD is much larger than those from the two models that assume small deviation from the equilibrium distribution.

This content is only available via PDF.
You do not currently have access to this content.