The flow and heat transfer characteristics in the cooling of a heated surface by impinging confined jets have been investigated numerically through the steady state solution of laminar two-dimensional Navier-Stokes and energy equations. The principal objective of this study is to investigate the effect of buoyancy on the associated heat transfer process. Numerical computations are done for vertically downward directed two-dimensional confined slot jets impinging on a hot isothermal surface at the bottom. The computed flow patterns and isotherms for various domain aspect ratios and for a range of jet exit Reynolds numbers (100–500) and Richardson numbers (0–10) are analyzed to understand the heat transfer phenomena. The local and average Nusselt numbers at the hot surface for various conditions are compared. It is observed that for a given domain aspect ratio and Richardson number, the average Nusselt number at the hot surface increases with increasing jet exit Reynolds number. On the other hand, for a given aspect ratio and Reynolds number the average Nusselt number does not change significantly with Richardson number indicating that the buoyancy effects are not very significant on the overall heat transfer process for the range of jet Reynolds number considered in this study.
Skip Nav Destination
ASME 2003 Heat Transfer Summer Conference
July 21–23, 2003
Las Vegas, Nevada, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-3695-9
PROCEEDINGS PAPER
Mixed Convection in Cooling of a Surface by Two-Dimensional Confined Slot Jet Impingement
Dipankar Sahoo,
Dipankar Sahoo
University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
M. A. R. Sharif
M. A. R. Sharif
University of Alabama, Tuscaloosa, AL
Search for other works by this author on:
Dipankar Sahoo
University of Alabama, Tuscaloosa, AL
M. A. R. Sharif
University of Alabama, Tuscaloosa, AL
Paper No:
HT2003-47343, pp. 817-826; 10 pages
Published Online:
December 17, 2008
Citation
Sahoo, D, & Sharif, MAR. "Mixed Convection in Cooling of a Surface by Two-Dimensional Confined Slot Jet Impingement." Proceedings of the ASME 2003 Heat Transfer Summer Conference. Heat Transfer: Volume 3. Las Vegas, Nevada, USA. July 21–23, 2003. pp. 817-826. ASME. https://doi.org/10.1115/HT2003-47343
Download citation file:
5
Views
0
Citations
Related Proceedings Papers
Related Articles
Three-Dimensional Heat Transfer of a Confined Circular Impinging Jet With Buoyancy Effects
J. Heat Transfer (April,2003)
Flow and Heat Transfer Due to a Buoyant Ceiling Jet Turning Downward at a Corner
J. Heat Transfer (February,1996)
Related Chapters
The Design and Implement of Remote Inclinometer for Power Towers Based on MXA2500G/GSM
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Adding Surface While Minimizing Downtime
Heat Exchanger Engineering Techniques
Conclusion
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow