Interfacial thermal contact resistance between the impinging flow of a molten droplet and a substrate, which is qualified by thermal contact conductance, plays an important role in the spreading and solidification of a droplet. In the present study, a simple correlation for the thermal contact conductance in the rapid contact solidification process was developed. With this correlation being directly used in numerical simulation, for the first time, a variable thermal contact resistance was taken into consideration to simulate both the dynamics and phase change responses during a molten droplet impingement. Numerical results were compared with that of the cases when thermal contact resistance was zero or a constant. The changes in spread factor with time and thermal contact conductance indicated that predictions from the computer simulation were sensitive to the values of thermal contact resistance. Experiment was conducted to demonstrate the validity of the present study. Comparison results showed that rather than using a constant average value, better agreement between the experimental and numerical results would be obtained if a variable thermal contact resistance were used in the numerical simulation.

This content is only available via PDF.
You do not currently have access to this content.