In this study, the force required to draw a polymer preform into optical fiber is predicted and measured, along with the resultant free surface shape of the polymer, as it is heated in an enclosed cylindrical furnace. The applied drawing force affects the degree of chain alignment within the polymer. Chain alignment causes orientational birefringence, an unwanted property that attenuates any propagating optical signal. The draw force is a function of the highly temperature dependent polymer viscosity. Therefore accurate prediction of the drawing force requires a detailed investigation of the heat transfer within the furnace. In this investigation, the full axi-symmetric conjugate problem (including both natural convection and thermal radiation) was solved using the commercial finite element package FIDAP. In addition, the location of the polymer/air interface was solved for as part of the problem and was not prescribed beforehand. Results show that thermal radiation accounts for approximately 70% of the total heating experienced by the deforming polymer, but only 15% of the cooling. The draw force is very sensitive to both the furnace wall temperature and to the feed rate of the polymer. Numerical results compared well with the experimentally measured draw tension and neck-down profiles for several preform diameters, draw speeds, and furnace temperatures. The predicted draw forces were typically within 20% of the experimentally measured values.
Skip Nav Destination
ASME 2003 Heat Transfer Summer Conference
July 21–23, 2003
Las Vegas, Nevada, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-3695-9
PROCEEDINGS PAPER
Investigation of Polymer Optical Fiber Drawing Force and Heat Transfer
Hayden M. Reeve,
Hayden M. Reeve
University of Washington, Seattle, WA
Search for other works by this author on:
Ann M. Mescher,
Ann M. Mescher
University of Washington, Seattle, WA
Search for other works by this author on:
Ashley F. Emery
Ashley F. Emery
University of Washington, Seattle, WA
Search for other works by this author on:
Hayden M. Reeve
University of Washington, Seattle, WA
Ann M. Mescher
University of Washington, Seattle, WA
Ashley F. Emery
University of Washington, Seattle, WA
Paper No:
HT2003-47445, pp. 259-268; 10 pages
Published Online:
December 17, 2008
Citation
Reeve, HM, Mescher, AM, & Emery, AF. "Investigation of Polymer Optical Fiber Drawing Force and Heat Transfer." Proceedings of the ASME 2003 Heat Transfer Summer Conference. Heat Transfer: Volume 3. Las Vegas, Nevada, USA. July 21–23, 2003. pp. 259-268. ASME. https://doi.org/10.1115/HT2003-47445
Download citation file:
6
Views
0
Citations
Related Proceedings Papers
Related Articles
Investigation of Steady-State Drawing Force and Heat Transfer in Polymer Optical Fiber Manufacturing
J. Heat Transfer (April,2004)
Erratum: "Investigation of Steady-State Drawing Force and Heat
Transfer in Polymer Optical Fiber Manufacturing" [Journal of Heat Transfer,
2004, 126 (2), pp. 236–243]
J. Heat Transfer (August,2004)
Modeling of Radiation Heat Transfer in the Drawing of an Optical Fiber With Multilayer Structure
J. Heat Transfer (March,2007)
Related Chapters
EVALUATION OF THERMAL PROBE COOLING EFFECT BASED ON PIPELINE PARALLEL OPTICAL CABLE
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Finite Element Solution of Natural Convection Flow of a Nanofluid along a Vertical Flat Plate with Streamwise Sinusoidal Surface Temperature
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)