Accounting for metabolic mass transfer and abiotic resource dynamics is not common in modeling microbial population growth. In this paper it is demonstrated that the latter is an essential feature that needs to be considered if reliable results are sought. The results of a model that takes the metabolic mass transfer and abiotic resource dynamics into account are shown to capture a variety of features that appear in experiments such as a Lag phase, a Logarithmic Inflection Point, growth followed by decline and oscillations. The results have a wide variety of implications and applications, from food microbiology and wine fermentation, up to human cell growth, where the latter includes tumor growth.

This content is only available via PDF.
You do not currently have access to this content.