The energy property in liquid near the wall was theoretically investigated to understand the effects of wall surface on inception process of nucleation or embryo bubble formation in boiling systems. Analyses indicate that the liquid near heating wall has higher pressure than in bulk region owing to existence of strong attractive forces, and this pressure could maintain a stable liquid microlayer and cause a steady energy peak near the wall. So a vapor embryo is likely to occur beyond the stable microlayer instead of exactly at the solid surface. The stable liquid layer may also be the inception structure of the ultrathin film before nucleation occurs. Fluctuations enhance the phenomenon of energy peak until the nucleation occurs, while energy peak promotes nucleation. Employing the concept of energy peak, the inception phenomena of the microlayer and the formation of embryo bubbles near solid surface were described.

This content is only available via PDF.
You do not currently have access to this content.