This paper presents a new numerical model, called the CAS model, for boiling heat transfer. The CAS model is based on the cellular automata technique that is integrated into the popular—SIMPLER algorithm for CFD problems. In the model, the cellular automata technique deals with the microscopic non-linear dynamic interactions of bubbles while the traditional CFD algorithm is used to determine macroscopic system parameters such as pressure and temperature. The popular SIMPLER algorithm is employed for the CFD treatment. The model is then employed to simulate a pool boiling process. The computational results show that the CAS model can reproduce most of the basic features of boiling and capture the fundamental characteristics of boiling phenomena. The heat transfer coefficient predicted by the CAS model is in excellent agreement with the experimental data and existing empirical correlations.

This content is only available via PDF.
You do not currently have access to this content.