This paper discusses the production and use of laser-machined surfaces that provide enhanced nucleate boiling and heat transfer characteristics. The surface features of heated plates are known to have a significant effect on nucleate boiling heat transfer and bubble growth dynamics. Nucleate boiling starts from discrete bubbles that form on surface imperfections, such as cavities or scratches. The gas or vapours trapped in these imperfections serve as nuclei for the bubbles. After inception, the bubbles grow to a certain size and depart from the surface. In this work, special heated surfaces were manufactured by laser machining cavities into polished aluminium plates. This was accomplished with a Nd:YAG laser system, which allowed drilling of cavities of a known diameter. The size range of cavities was 20 to 250 micrometers. The resulting nucleate pool boiling was analysed using a novel high-speed imaging system comprising an infrared laser and high resolution CCD camera. This system was operated up to a 2 kHz frame rate and digital image processing allowed bubbles to be analysed statistically in terms of departure diameter, departure frequency, growth rate, shape and velocity. Data was obtained for heat fluxes up to 60 kW.m−2. Bubble measurements were obtained working with water at atmospheric pressure. The surface cavity diameters were selected to control the temperature at which vapour bubbles started to grow on the surface. The selected size and spacing of the cavities was also explored to provide optimal heat transfer.

This content is only available via PDF.
You do not currently have access to this content.