Two-phase microchannel heat exchangers are receiving increasing attention from the microprocessor industry as power density levels in microchips increase. Previous numerical investigations of convective boiling in microchannels assumed steady flow within the channels. However, experimental data shows that two-phase flows in microchannels are highly transient even under steady heat loads. Little work has been done to model the dynamics associated with vapor generation in microchannels. The present work simulates the periodic distribution of vapor within microchannels filled with water by solving one-dimensional homogeneous equations for the mass, momentum and energy transport in conjunction with a transient wall conduction equation. A wall superheat constraint is incorporated to account for the excess superheat temperature required for bubble nucleation. Boiling events reduce the local wall temperature and change the pressure and enthalpy distributions within the flow. The transient pressure fluctuations predicted here are consistent with those observed in experiments. This study provides insight into the significance of bubble nucleation for forced convective boiling in microchannels and will be useful for the optimization of microchannel heat exchangers.
Skip Nav Destination
ASME 2003 Heat Transfer Summer Conference
July 21–23, 2003
Las Vegas, Nevada, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-3694-0
PROCEEDINGS PAPER
Numerical Simulation of Transient Boiling Convection in Microchannels
K. E. Goodson
K. E. Goodson
Stanford University, Stanford, CA
Search for other works by this author on:
D. W. Fogg
Stanford University, Stanford, CA
J. M. Koo
Stanford University, Stanford, CA
L. Jiang
Stanford University, Stanford, CA
K. E. Goodson
Stanford University, Stanford, CA
Paper No:
HT2003-47300, pp. 459-465; 7 pages
Published Online:
December 17, 2008
Citation
Fogg, DW, Koo, JM, Jiang, L, & Goodson, KE. "Numerical Simulation of Transient Boiling Convection in Microchannels." Proceedings of the ASME 2003 Heat Transfer Summer Conference. Heat Transfer: Volume 2. Las Vegas, Nevada, USA. July 21–23, 2003. pp. 459-465. ASME. https://doi.org/10.1115/HT2003-47300
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Jet Impingement Boiling From a Circular Free-Surface Jet During Quenching: Part 2—Two-Phase Jet
J. Heat Transfer (October,2001)
Microscale bubble nucleation from an artificial cavity in single microchannel
J. Heat Transfer (August,2003)
Numerical Simulation of Evaporating Two-Phase Flow in a High-Aspect-Ratio Microchannel with Bends
J. Heat Transfer (August,2017)
Related Chapters
Thermal Design Guide of Liquid Cooled Systems
Thermal Design of Liquid Cooled Microelectronic Equipment
Liquid Cooled Systems
Thermal Management of Telecommunications Equipment
Even a Watched Pot Boils Eventually
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong