The performance and reliability of sub-micron semiconductor transistors demands accurate modeling of electron and phonon transport at nanoscales. The continued downscaling of the critical dimensions, introduces hotspots, inside transistors, with dimensions much smaller than phonon mean free path. This phenomenon, known as localized heating effect, results in a relatively high temperature at the hotspot that cannot be predicted using heat diffusion equation. While the contribution of the localized heating effect to the total device thermal resistance is significant during the normal operation of transistors, it has even greater implications for the thermoelectrical behavior of the device during an electrostatic discharge (ESD) event. The Boltzmann transport equation (BTE) can be used to capture the ballistic phonon transport in the vicinity of a hot spot but many of the existing solutions are limited to the one-dimensional and simple geometry configurations. We report our initial progress in solving the two dimensional Boltzmann transport equation for a hot spot in an infinite media (silicon) with constant temperature boundary condition and uniform heat generation configuration.

This content is only available via PDF.
You do not currently have access to this content.