Rocket engine exhaust plume is generally thermal in character arising from changes in the internal energy of constituent molecules. Radiation from the plume is attenuated in its passage through the atmosphere. In the visible and the infrared region of the spectrum for clear-sky conditions, this is caused mainly through absorption by atmospheric molecular species. The most important combustion-product molecules giving rise to emission in the IR are water vapor, carbon dioxide, and carbon monoxide. In addition, the high temperature plume reacting with the surrounding atmosphere may produce nitrogen oxides, in the boundary layer, all of which are strongly emitting molecules. Important absorbing species in the atmosphere in the engine plume environment are H2O, CO, CO2, CH4, N2O, NO, and NO2. Under normal atmospheric conditions, the concentrations of O3, SO2, and NH3 are too small to produce any significant absorption. Essentially the problem comprises of the propagation of radiation from a hot gas source through a long cool absorbing atmosphere thus combining aspects of atmospheric and combustion gas methods. Since many of the same molecular species are responsible for both emission and absorption, the high degree of line position correlation between the emission and absorption spectra precludes the decoupling of the optical path into isolated emitter and absorber regions and multiplying the source band radiance by the absorber band transmittance in order to arrive at the transmitted radiance spectrum. Also, very strong thermal gradients may be encountered. All this suggests that a layer-by-layer computation is called for. The pathlength through the plume and the atmosphere is assumed to go through a certain number of layers, each of which is considered to have all molecular species in local thermodynamic equilibrium at constant temperature and pressure within the layer. Radiative transfer problems can be visualized as a set of parallel layers orthogonal to the line of sight, each with an input radiance from the previous layer and an output radiance to the subsequent layer. The MODTRAN (MODerate resolution TRANsmission) code is ideally suited for layer-by-layer absorption/emission calculations for atmospheric molecular species. We have utilized MODTRAN 4.0 computer code, implemented on a Power Mac G3, for the radiance and transmittance computations. The MODTRAN code has been adapted for the engine plume radiance computations. If the plume composition and flowfield parameters such as the temperature and pressure values are known along the line of sight by means of the experimental measurements or (more likely) CFD simulations, one can compute the radiance from any plume with high degree of accuracy at any desired point in space. Emission and absorption characteristics of several atmospheric and combustion species have been studied and presented in this paper with reference to the rocket engine plume environments at the Stennis Space Center. In general transmittance losses can not be neglected for any pathlength of 2 m or more. We have also studied the effect of clouds, rain, and fog on the plume radiance/transmittance. The transmittance losses are severe if any of these occur along the line of sight. Preliminary results for the radiance from the exhaust plume of the space shuttle main engine are shown and discussed.

This content is only available via PDF.
You do not currently have access to this content.