With the advancements in composite technology several innovative applications present themselves that involve high-speed composite rotors spinning in a stator assembly. As rotational speeds and rotor tip speeds increase, these rotors must operate in low air pressure environments to minimize windage losses and thermal effects of being at high speed for long durations. Accurately predicting this windage loss for a specific geometry and operating conditions is very important for a proper design. It is also very important to know the relative heat distribution that is seen by the rotor and stator from this windage loss. Analysis tools to date do not have a coupled link that calculates windage loss and a resultant thermal distribution to the rotor and stator surfaces. This paper presents the design and fabrication of a test setup to measure the total windage loss and temperature distribution from a high-speed composite rotor in a stator structure. Rotor speeds up to 40,000 rpm and rotor tip speeds up to 900 m/s with pressure ranges from 0.1 torr to 10 torr were operating parameters during the testing. The paper will also present experimental data obtained during the testing. Experimental data obtained during the testing will be used to evaluate new analysis methods for predicting the windage loss and thermal distribution in new high-speed rotor applications.

This content is only available via PDF.
You do not currently have access to this content.