Local Nusselt numbers were experimentally measured in decaying, swirling flow in a pipe. Using a tangential injection mechanism, the two inlet conditions examined in this study were tangential flow and superimposed tangential and axial flow. Local Nusselt numbers at the pipe inlet were greater for tangential flow than for superimposed tangential and axial flow at the same Reynolds number. Local Nusselt numbers increased as the amount of fluid injected tangentially was increased for the superimposed case. For both inlet conditions employed with the present swirl generator, the local Nusselt number approached the fully-developed value in the far field. At the exit of the pipe, L/D = 62.8, local Nusselt numbers were greater than the fully-developed Nusselt number; therefore, heat transfer enhancement was still present at the exit of the pipe. The effect of axial flow on the local Nusselt numbers is explored in this investigation for air and over a Reynolds number range of 12,000 to 29,000.

This content is only available via PDF.
You do not currently have access to this content.