The frictional windage losses associated with non-ventilated airflows in the air gaps between the rotor and stator of a high speed rotating machine can greatly influence the rotor outer and stator inner surface temperatures. The characteristics of the radial and axial air-gap flows have been of general interest in many engineering applications. A rotating air gap flow is very complex, and in general, can be categorized as a continuum flow, slip flow, and free molecule flow, depending on the ratio of its mean free path to the air gap dimension. For a continuum flow between concentric rotating cylinders, secondary flow of rows of circumferential Taylor vortices in the air gap due to centrifugal flow instability of a curved flow at relatively high rotating speeds will typically be formed. As the air pressure in the air gap drops significantly, rarefied gas flow, departure from continuum flow, occurs when the mean free path becomes relatively large compared to the air gap dimension. This paper has developed and summarized an analytical approach to predict high speed windage losses (rotor tip velocities up to 900 m/s) at low rotor cavity air pressures (0.1 torr to 10 torr). The predicted transient windage losses at various air pressures and high rotor speeds are compared with measured windage losses generated in continuum and slip flow regimes. The agreements between the predicted and measured windage losses are relatively well.
Skip Nav Destination
ASME 2003 Heat Transfer Summer Conference
July 21–23, 2003
Las Vegas, Nevada, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
0-7918-3693-2
PROCEEDINGS PAPER
Prediction of Windage Losses of an Enclosed High Speed Composite Rotor in Low Air Pressure Environments
Hsing-Pang Liu,
Hsing-Pang Liu
University of Texas at Austin, Austin, TX
Search for other works by this author on:
Mike Werst,
Mike Werst
University of Texas at Austin, Austin, TX
Search for other works by this author on:
Jonathan J. Hahne,
Jonathan J. Hahne
University of Texas at Austin, Austin, TX
Search for other works by this author on:
David Bogard
David Bogard
University of Texas at Austin, Austin, TX
Search for other works by this author on:
Hsing-Pang Liu
University of Texas at Austin, Austin, TX
Mike Werst
University of Texas at Austin, Austin, TX
Jonathan J. Hahne
University of Texas at Austin, Austin, TX
David Bogard
University of Texas at Austin, Austin, TX
Paper No:
HT2003-47118, pp. 15-23; 9 pages
Published Online:
December 17, 2008
Citation
Liu, H, Werst, M, Hahne, JJ, & Bogard, D. "Prediction of Windage Losses of an Enclosed High Speed Composite Rotor in Low Air Pressure Environments." Proceedings of the ASME 2003 Heat Transfer Summer Conference. Heat Transfer: Volume 1. Las Vegas, Nevada, USA. July 21–23, 2003. pp. 15-23. ASME. https://doi.org/10.1115/HT2003-47118
Download citation file:
23
Views
Related Proceedings Papers
Related Articles
On a General Method of Unsteady Potential Calculation Applied to the Compression Stages of a Turbomachine—Part I: Theoretical Approach
J. Fluids Eng (December,2001)
Unsteady Flow Interactions Within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal
J. Turbomach (October,2005)
Modeling Shrouded Stator Cavity Flows in Axial-Flow Compressors
J. Turbomach (January,2000)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Pulsating Supercavities: Occurrence and Behavior
Proceedings of the 10th International Symposium on Cavitation (CAV2018)