The formation of a two dimensional synthetic jet is studied numerically by solving the incompressible, unsteady, Reynolds-averaged, Navier-Stokes equations. Results for two exit geometries, a sharp exit and a rounded exit, and several dimensionless stroke lengths are compared. This study focuses on how the exit geometry and dimensionless stroke length change the following parameters: the power required to form the jet, the net momentum flux in the jet downstream of the exit, the formation threshold of the synthetic jet, and the location of the stagnation point during the suction portion of the cycle.

This content is only available via PDF.
You do not currently have access to this content.