The ability to eliminate freezing damage using “vitrification” (or the formation of glass) has long been an area of intense interest in cryobiology. Typically vitrification is achieved when biological systems are cooled at rates ranging from ∼8,000 °C/min to ∼10,000 °C/min [1–5]. Using traditional cooling methods (immersion in liquid nitrogen), such high cooling rates are currently not achievable, in large tissue sections (∼cm’s). In the present study we investigate a novel method to achieve high cooling rates in large tissue sections by pulsed laser heating in conjunction with cryogenic temperatures, i.e. high cooling rates are achieved by the localized difference in temperature between the laser heated tissue (∼1000’s of °C) and the surrounding liquid nitrogen (∼−160 °C). Additionally, the use of pulsed lasers allows localized heating of the tissue coupled with small time scales of energy deposition (0.1 to 1 pico seconds) such that the heating/thermal damage in tissues is minimized. To amplify this idea further, we developed a numerical model to predict the temperature transients in tissues exposed to laser heating and cryogenic temperatures. Analysis of our numerical simulations suggest that a perturbation of ∼3500 °C in a 5mm thick tissue leads to cooling rates in excess of ∼8000 °C/min throughout the tissue slice. These results indicate the possibility of vitrifying large tissue sections of cryobiological relevance using a combination of laser heating and liquid nitrogen cooling.
Skip Nav Destination
ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
July 11–15, 2004
Charlotte, North Carolina, USA
Conference Sponsors:
- Heat Transfer Division and Fluids Engineering Division
ISBN:
0-7918-4693-8
PROCEEDINGS PAPER
Numerical Investigation of a Novel Method to Vitrify Biological Tissues Using Pulsed Lasers and Cryogenic Temperatures
Deepak Kandra,
Deepak Kandra
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Tryfon Charalampopoulos,
Tryfon Charalampopoulos
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Ram Devireddy
Ram Devireddy
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Deepak Kandra
Louisiana State University, Baton Rouge, LA
Tryfon Charalampopoulos
Louisiana State University, Baton Rouge, LA
Ram Devireddy
Louisiana State University, Baton Rouge, LA
Paper No:
HT-FED2004-56197, pp. 701-706; 6 pages
Published Online:
February 24, 2009
Citation
Kandra, D, Charalampopoulos, T, & Devireddy, R. "Numerical Investigation of a Novel Method to Vitrify Biological Tissues Using Pulsed Lasers and Cryogenic Temperatures." Proceedings of the ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. Volume 4. Charlotte, North Carolina, USA. July 11–15, 2004. pp. 701-706. ASME. https://doi.org/10.1115/HT-FED2004-56197
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Continuum Mechanics Analysis of Fracture Progression in the Vitrified Cryoprotective Agent DP6
J Biomech Eng (April,2008)
Recent Developments in Biotransport
J. Thermal Sci. Eng. Appl (December,2010)
A Study on Mechanical Damage of Tumor Microvasculature Induced by Alternate Cooling and Heating
J. Thermal Sci. Eng. Appl (September,2009)
Related Chapters
Glass Laser Materials Testing at Naval Research Laboratory
Damage in Laser Glass
Laser-Damage Mechanisms in Transparent Dielectrics
Damage in Laser Glass
A Laser Heating Device for Metallographic Studies
Advances in Electron Metallography: Vol. 6