This study aims to develop a simple and quick, but sufficiently accurate solution method for calculating the air flow and tracking the particles in a complex tubular system, where the flow changes its magnitude and direction in a periodic manner. The flow field is assumed to be quasi-two-dimensional and a pressure-correction method is employed to calculate the spetio-temporal variation of the air velocity inside the larynx. Then, the calculated one-dimensional flow distribution is used to reconstruct a two-dimensional flow field is constructed based on the average velocity along the axial direction. The system geometry is taken as close as possible to the actual larynx for an average person with an average glottis opening. For the current study the walls of the larynx is approximated as rigid walls, but different ways to account for compliant walls are proposed within the context of the one-dimensional mode. The 1-D transient model is validated against a two-dimensional model using a verified commercial code. Particles are introduced into the system and tracked during every time fraction of the respiratory cycle. Then, the histograms of particles that come into contact with the larynx are calculated, and regions with a higher probability for particle deposition are identified.
Skip Nav Destination
ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
July 11–15, 2004
Charlotte, North Carolina, USA
Conference Sponsors:
- Heat Transfer Division and Fluids Engineering Division
ISBN:
0-7918-4693-8
PROCEEDINGS PAPER
A Simple Model for Fluid Flow and Particle Motion Inside the Human Larynx
C. Ersahin,
C. Ersahin
West Virginia University, Morgantown, WV
Search for other works by this author on:
I. B. Celik,
I. B. Celik
West Virginia University, Morgantown, WV
Search for other works by this author on:
O. C. Elci,
O. C. Elci
Centers for Disease Control and Prevention (CDC), Morgantown, WV
Search for other works by this author on:
I. Yavuz,
I. Yavuz
West Virginia University, Morgantown, WV
Search for other works by this author on:
G. Hu
G. Hu
West Virginia University, Morgantown, WV
Search for other works by this author on:
C. Ersahin
West Virginia University, Morgantown, WV
I. B. Celik
West Virginia University, Morgantown, WV
O. C. Elci
Centers for Disease Control and Prevention (CDC), Morgantown, WV
I. Yavuz
West Virginia University, Morgantown, WV
J. Li
West Virginia University, Morgantown, WV
G. Hu
West Virginia University, Morgantown, WV
Paper No:
HT-FED2004-56137, pp. 675-683; 9 pages
Published Online:
February 24, 2009
Citation
Ersahin, C, Celik, IB, Elci, OC, Yavuz, I, Li, J, & Hu, G. "A Simple Model for Fluid Flow and Particle Motion Inside the Human Larynx." Proceedings of the ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. Volume 4. Charlotte, North Carolina, USA. July 11–15, 2004. pp. 675-683. ASME. https://doi.org/10.1115/HT-FED2004-56137
Download citation file:
3
Views
Related Proceedings Papers
Related Articles
A Thermal Lattice Boltzmann Two-Phase Flow Model and Its Application to Heat Transfer Problems—Part 1. Theoretical Foundation
J. Fluids Eng (January,2006)
Fluid Flow Phenomena in Dusty Air
J. Basic Eng (September,1970)
Two-Phase Dusty Fluid Flow Along a Rotating Axisymmetric Round-Nosed Body
J. Heat Transfer (August,2017)
Related Chapters
Applications
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Hydrodynamic Mass, Natural Frequencies and Mode Shapes
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Introduction
Axial-Flow Compressors