An Eulerian-Lagrangian numerical method is used to simulate the cyclone separator experiment by Hoffmann [1] which is operated under low solid loadings. Comparisons are made with data from for overall separation efficiency and on a size-distribution basis, i.e., ‘cut-grade’. The Arena-flow computational approach is a transient, three-dimensional multiphase particle-in-cell (MP-PIC) numerical method where the dynamics of both the continuum fluid and millions of discrete particle ‘clouds’ are solved using Eulerian and Lagrangian representations, respectively. The Arena-flow software allows for any distribution of particle types, sizes, and density. The three-dimensional transient simulations show excellent agreement with measured data which have cyclone efficiencies on the order of 85%. The CFD analysis reveal details that cannot be experimentally measured, such as internal particle size segregation, wall effects, vortex entrainment, particle-to-particle interactions and agglomeration.

This content is only available via PDF.
You do not currently have access to this content.