Heat transfer and flow field distributions inside a furnace used for manufacturing carbon aircraft brakes are investigated by using non-Boussinesq equations. These equations, unlike their Boussinesq counterpart, enable us to account properly for the large variation of properties with temperature. Radiation between the furnace wall and the porous brake substrates is modelled by taking these surfaces as gray and diffuse, while the gas is considered to be a non-participating medium. A non-Darcian model is used for the flow in the porous brakes. We have implemented the equations within FIDAP, a commercial finite element code. The accuracy of the solution is validated by using well-established numerical solutions for laminar flows.

This content is only available via PDF.
You do not currently have access to this content.