Hearth wearing is the key limit of a blast furnace campaign life. Hot metal flow pattern and temperature distributions are the two key variables to determine the rate and style of the hearth wearing. And the shape, structure and position of the deadman are the three major variables to assign the fluid flow pattern and temperature profile in the hearth. In this paper, a new method for deadman description was put forward and a comprehensive computational fluid dynamics (CFD) code was described, which was developed specifically for the simulation of blast furnace hearth. That program can predict the liquid flow patterns and temperature distributions of the hot metal as well as temperature profiles in the hearth refractory materials under different conditions. The results predicted by the CFD code were evaluated by comparing with actual industrial operation data.

This content is only available via PDF.
You do not currently have access to this content.