This paper presents the effect of interfacial heat transfer on the breakup of an annular jet surrounded by another viscous liquid. Specifically, we consider the breakup of a molten tin jet in eicosane. One-field volume tracking is used which involves solving one set of equations for conservation of mass, momentum and energy. The original idea behind volume tracking methods has been used not only to advect mass and momentum but also energy across cell boundaries. The van Leer method is used to approximate advection temperatures across the sharp temperature gradients existing at fluid/fluid interface. To study the effect of heat transfer on the hydrodynamics of the flow, all fluid properties except density are modelled as temperature dependent. Results show a direct correlation between interfacial heat transfer and the location of the breakup. For tin, results show that the temperature dependency of viscosity is the major factor in dictating the location and time of the breakup.

This content is only available via PDF.
You do not currently have access to this content.