The consistent behavior of non-dimensional parameters on the formation and break up of large cylindrical droplets has been studied by direct numerical simulations (DNS). A one-fluid model with a finite difference method and an advanced front tracking scheme was employed to solve unsteady, incompressible, viscous, immiscible, multi-fluid, two-dimensional Navier-Stokes equations. This time dependent study allows investigation of evolution of the droplets in different cases. For moderate values of Atwood number (AT), increasing Eotvos number (Eo) explicitly increases the deformation rate in both phenomena. Otherwise, raising the Ohnesorge number (Oh) basically amplifies the viscous effects.
Volume Subject Area:
Computational Fluid Dynamics and Heat Transfer
This content is only available via PDF.
Copyright © 2004
by ASME
You do not currently have access to this content.