Eddy-viscosity models such as the Smagorinsky model [1] are the most often employed subgrid-scale (SGS) models for large-eddy simulations (LES). However, for a correct prediction of the viscous sublayer of wall-bounded turbulent flows van-Driest wall damping functions or a dynamic determination of the constant [2] have to be employed. Alternatively, high-pass filtered (HPF) quantities can be used instead of the full velocity field for the computation of the subgrid-scale model terms. This approach has been independently proposed by Vreman [3] and Stolz et al. [4]. In this contribution we consider LES of a spatially developing supersonic turbulent boundary layer at a Mach number of 2.5 and momentum-thickness Reynolds numbers at inflow of approximately 4500, using the HPF Smagorinsky model. The model is supplemented by a HPF eddy-diffusivity ansatz for the SGS heat flux in the energy equation. Turbulent inflow conditions are generated by a rescaling and recycling technique proposed by [5] where the mean and fluctuating part of the turbulent boundary layer at some distance downstream of inflow is rescaled and reintroduced at inflow.

This content is only available via PDF.
You do not currently have access to this content.