The development of a buoyant plane wake has been investigated experimentally. A water channel has been used as a statistically steady experiment to investigate the plane wakes. Parallel streams of hot and cold water are initially separated by a splitter plate. The streams are oriented such that the cold fluid is above the hot fluid, resulting in an unstable stratification. At the end of the splitter plate, the two streams are allowed to mix and a buoyancy driven mixing layer develops. Downstream of the splitter plate, growth of the turbulent buoyancy-driven mix is disrupted by a cylinder. The cylinder is located at the centerline of the mixing layer and associated wake. As a result the dynamic flows of the plane wake and buoyancy driven mixing layer interact. Particle image velocimetry (PIV), and a high-resolution thermocouple system are used to measure the response of the plane wake to buoyancy driven turbulence. Velocity and density measurements are used as a basis from which we describe the transition, and return to equilibrium, of the buoyancy driven mixing layer. We found for wakes where buoyancy is driving the motion, a remarkably fast recovery of a Rayleigh-Taylor mix in the wake region.

This content is only available via PDF.
You do not currently have access to this content.