Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: flow distortion
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. GTINDIA2012, ASME 2012 Gas Turbine India Conference, 173-179, December 1, 2012
Paper No: GTINDIA2012-9625
... caused by the change in centerline curvature is analyzed. The objective of the work is to derive a shape of the duct with minimum distortion of the flow and maximum pressure recovery. intake duct inlet shape static pressure recovery coefficient total pressure loss flow distortion 1...
Abstract
Performance of intake duct with fixed inlet trajectory and different area distributions have been analyzed using a commercial CFD (Computational Fluid Dynamics) software. The performance have been evaluated for fixed boundary conditions. The area distributions studied are defined by varying cross sectional area at different locations of intake duct by keeping the inlet and exit area same. The performance of the intake ducts are studied in terms of the pressure recovery coefficient, total pressure loss, pressure recovery factor and distortion coefficient in the present work. The motion caused by the change in centerline curvature is analyzed. The objective of the work is to derive a shape of the duct with minimum distortion of the flow and maximum pressure recovery.