The heat treatment response of AlSi10Mg via laser powder bed fusion (LPBF) has been studied via detailed microstructural characterization. The effect of solutioning (S) and water quenching (WQ) vs furnace cooling (FC), and direct aging (DA) vs solutioning and aging (SA), has been analysed, for microstructure and tensile properties. 11 heat treatments were carried out to map the partitioning of Si, starting with stress relieving at 200 °C vs 300 °C, followed by solution heat treatment at 430°C vs 530 °C, water quenching vs furnace cooling, aging at 160 °C vs direct aging at 160 °C, to establish the microstructure of LPBF AlSi10Mg alloys for potential applications. The microstructure at 430 °C and 530 °C shows Si precipitate fractions of 25% and 14%, respectively. Room temperature mechanical properties, revealed the 300 °C, 2 h stress relieved sample with the highest strength and ductility (YS of 230 MPa and 16%). At 430 °C, both water quenching and furnace cooling showed similar strengths and 16% elongation, while at 530 °C, there was a much lower elongation (8–9%) with the T6 (53 °C, WQ, SA) showing higher strength and elongation. This study brings out the importance of being able to choose the heat treatments suitable to AlSiMg part geometry, via LPBF additive manufacturing for various applications.

This content is only available via PDF.
You do not currently have access to this content.