Vortex-induced vibration is one of the predominant fundamental concepts for forced oscillation which attracts considerable practical engineering application for energy conversion. In this work, an oscillation of a mast arising as a result of wind force is utilized for energy conversion. The paradigm for energy conversion from vortex-induced vibration in the mast is the bladeless wind turbine. It consists of a rigid mass known as a mast, fixed in the spring of stiffness (k) and allowed to oscillate along the direction of the flow. In this work, four different types of mast have been fabricated and tested. The first is uniform tapered hollow conical mast (MAST1), the cross-section of the second is uniform tapered plus symbol (MAST2), the third is uniform tapered inversed plus symbol (MAST3) and the fourth is uniform tapered simple rectangular cross-section (MAST4). All the masts were fabricated using fiber carbon. The experiments were conducted in a versatile small wind turbine testing facility of Hindustan Institute of Technology and Science, Chennai. This test facility contained an open jet wind tunnel with variable frequency drive and other measuring instruments. The vibration sensor was located in the mast where it experienced a large oscillation in a free stream. In this experiment, an increase in wind velocity led to a terrible change in the amplitude of vibration. A vigorous oscillation was experienced in this mast at this critical frequency, when the natural frequency of the mast was synchronized with the frequency of the vortex shedding and the frequency of the oscillation of the mast. The total force in this oscillation was a summation of the body force due to the mass of the mast and vorticity force that is mainly which was the result of the shedding of the vortices. In this work, extensive studies have been carried out for Reynolds number ranging from 2.5 × 105 to 5.0 × 105. The mast length to diameter ratio of 13 was exposed to various speeds of wind and response was measured. The occurrence of the maximum oscillation in a simple rectangular mast was seen where vortex shedding due to the bluff body was large for constant mass and spring stiffness. The frequency of the oscillation at maximum amplitude of the rectangular cross-section mast was equal to the natural frequency, due to vortices shedding at critical velocity. This demonstrated the appropriateness of the simple rectangular cross-section for harnessing the low rated wind energy and its suitability for renewable energy conversion in the small bladeless wind turbine.

This content is only available via PDF.
You do not currently have access to this content.