This paper focusses on analysing the vibration behaviour of a rigid rotor levitated by active magnetic bearings (AMB) under the influence of unbalance and misalignment parameters. Unbalance in rotor and misalignment between rotor and both supported AMBs are key fault parameters in the rotor system. To demonstrate this dynamic analysis, an unbalanced rigid rotor with a disc at the middle levitated by two misaligned active magnetic bearings has been mathematically modelled. One of the novel concepts is also described as how the force due to active magnetic bearings on the rigid rotor is modified when the rotor is parallel misaligned with AMBs. With inclusion of inertia force, unbalance force and force due to misaligned AMBs, the equations of motion of the rigid rotor system are derived and converted into dimensionless form in terms of various non-dimensional system and fault parameters. Numerical simulations have been performed to yield the dimensionless rotor displacement and controlling current responses at AMBs. The prime intention of the present paper is to study the effect on the displacement response of the rigid rotor system and the current consumption of AMBs for different ranges of disc eccentricities and rotor-AMB misalignments.

This content is only available via PDF.
You do not currently have access to this content.