Jet blast impact on aerofoil blade of the deflector is studied which redirects the high energy exhaust of jet engine during the ground testing. The geometric model of aerofoils is designed with structured mesh around the aerofoil in rectangular domain generated in ICEM 16 software. The jet blast impact on aerofoil blade of the deflector is numerically simulated with SST k-ω model based on CFD theory. The fluid flow is high-speed compressible flow and flowing fluid air is considered as an ideal gas and also Sutherland’s law viscosity is applied to account for the dependence of molecular viscosity on temperature. Flow is taken as first order upwind and flux type is AUSM (Advection Upstream Splitting Method) to get an exact resolution of contact and shock discontinuities. The distribution of temperature, pressure, velocity and streamline of fluid flow is numerically simulated by FLUENT 16 software and layout of eddies generation behind aerofoil is generated in Tecplot 360 software. The coefficient of lift (Cl) and the coefficient of drag (Cd) are calculated to study the impact on aerofoil blade in horizontal and vertical direction. The result indicates that the method presented in this paper can analyze the fluid behavior on the complicated geometry of aerofoil blade that the flow between two adjacent aerofoil blades obtains a highly reliable simulation result. The value of lift force is negative i.e it holds the deflector towards the ground, so optimum balance between drag force and lifts force is obtained by simulating at a different angle of attack and pitch. Through CFD numerical simulation at a different angle of attack and pitch, the best result is obtained and conductive suggestions can be given for the adaptation of the JBD blade.

This content is only available via PDF.
You do not currently have access to this content.