This paper presents a comparative analysis of the time, frequency and time-frequency domain based features of the vibration and current signals for identifying various faults in induction motors (IMs) using support vector machine (SVM). Four mechanical faults (bearing fault, unbalanced rotor, bowed rotor and misaligned rotor), and three electrical faults (broken rotor bars, stator winding fault with two severity levels and phase unbalance with two severity levels) are considered in the present study. The proposed fault diagnosis consists of three steps. In the first step, the vibration in three orthogonal directions and the current in three phases are acquired from the healthy and faulty motors using a machine fault simulator (MFS). In second step, useful statistical features are extracted from the time, frequency and time-frequency domain (continuous wavelet transform (CWT)) of the signal. For the effective fault diagnosis, SVM parameters are optimally selected based on the grid-search method along with 5-fold cross-validation, and the effective fault features are selected based on the wrapper model. Finally, the fault diagnosis of IM is performed using optimal SVM parameters and effective features as input to the SVM. The classification performance of all methodologies developed in three domains is compared for various operating conditions of IMs. The test results showed that the developed methodology could isolate ten IM fault conditions successfully based on features from all three domains at all IM operating conditions; however, time-frequency features give the best results.
Skip Nav Destination
ASME 2017 Gas Turbine India Conference
December 7–8, 2017
Bangalore, India
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5851-6
PROCEEDINGS PAPER
Analysis of Time, Frequency and Wavelet Based Features of Vibration and Current Signals for Fault Diagnosis of Induction Motors Using SVM
Purushottam Gangsar,
Purushottam Gangsar
Indian Institute of Technology Guwahati, Guwahati, India
Search for other works by this author on:
Rajiv Tiwari
Rajiv Tiwari
Indian Institute of Technology Guwahati, Guwahati, India
Search for other works by this author on:
Purushottam Gangsar
Indian Institute of Technology Guwahati, Guwahati, India
Rajiv Tiwari
Indian Institute of Technology Guwahati, Guwahati, India
Paper No:
GTINDIA2017-4774, V002T05A027; 10 pages
Published Online:
February 2, 2018
Citation
Gangsar, P, & Tiwari, R. "Analysis of Time, Frequency and Wavelet Based Features of Vibration and Current Signals for Fault Diagnosis of Induction Motors Using SVM." Proceedings of the ASME 2017 Gas Turbine India Conference. Volume 2: Structures and Dynamics; Renewable Energy (Solar, Wind); Inlets and Exhausts; Emerging Technologies (Hybrid Electric Propulsion, UAV,..); GT Operation and Maintenance; Materials and Manufacturing (Including Coatings, Composites, CMCs, Additive Manufacturing); Analytics and Digital Solutions for Gas Turbines/Rotating Machinery. Bangalore, India. December 7–8, 2017. V002T05A027. ASME. https://doi.org/10.1115/GTINDIA2017-4774
Download citation file:
47
Views
Related Proceedings Papers
Related Articles
Multifault Diagnosis of Induction Motor at Intermediate Operating Conditions Using Wavelet Packet Transform and Support Vector Machine
J. Dyn. Sys., Meas., Control (August,2018)
Model- and Information Theory-Based Diagnostic Method for Induction Motors
J. Dyn. Sys., Meas., Control (September,2006)
Related Chapters
Vibration Monitoring for Fault Diagnosis in Rotating Machinery Using Wavelet Transform
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Unbalance
Fundamentals of Rotating Machinery Diagnostics
Research Tools
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications