This paper presents a comparative analysis of the time, frequency and time-frequency domain based features of the vibration and current signals for identifying various faults in induction motors (IMs) using support vector machine (SVM). Four mechanical faults (bearing fault, unbalanced rotor, bowed rotor and misaligned rotor), and three electrical faults (broken rotor bars, stator winding fault with two severity levels and phase unbalance with two severity levels) are considered in the present study. The proposed fault diagnosis consists of three steps. In the first step, the vibration in three orthogonal directions and the current in three phases are acquired from the healthy and faulty motors using a machine fault simulator (MFS). In second step, useful statistical features are extracted from the time, frequency and time-frequency domain (continuous wavelet transform (CWT)) of the signal. For the effective fault diagnosis, SVM parameters are optimally selected based on the grid-search method along with 5-fold cross-validation, and the effective fault features are selected based on the wrapper model. Finally, the fault diagnosis of IM is performed using optimal SVM parameters and effective features as input to the SVM. The classification performance of all methodologies developed in three domains is compared for various operating conditions of IMs. The test results showed that the developed methodology could isolate ten IM fault conditions successfully based on features from all three domains at all IM operating conditions; however, time-frequency features give the best results.

This content is only available via PDF.
You do not currently have access to this content.