Centrifugal pumps (CPs) are crucial components in many plant operations. However, they are susceptible to failures due to mechanical faults and/or fluid flow abnormalities. These faults not only affect the CP system but also affect the systems delivering flow to it or receiving flow from it. Therefore, it is extremely crucial to recognize the faults and estimate their severity during operation, so that a corrective action may be initiated. In the present work, an attempt has been made to develop a flexible algorithm based on support vector machine (SVM) suitable to classify CP faults, like the suction and discharge blockages (with varying severities), impeller defects, pitted cover plate faults and dry runs. Also, a combination of mechanical faults (impeller defects and pitted cover plate faults) and suction and discharge blockage faults are considered. For the sake of classification, the CP vibration data and the motor line-current data are generated in time-domain for each fault experimentally. Furthermore, industrially operating CP signatures cannot be immune to noise generated from other operating equipment in the premises. Hence, to assess the robustness of the developed methodology, signals are corrupted by adding 5%, 10% and 25% additive white Gaussian noise. The developed algorithm is tested with corrupted data. The efficiency of fault predictions obtained while testing with noisy and non-noisy data are compared. The results are very promising and carry a high potential for industrial applications.
Skip Nav Destination
ASME 2017 Gas Turbine India Conference
December 7–8, 2017
Bangalore, India
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5851-6
PROCEEDINGS PAPER
A Compliant Algorithm to Diagnose Multiple Centrifugal Pump Faults With Corrupted Vibration and Current Signatures in Time-Domain
Janani Shruti Rapur,
Janani Shruti Rapur
Indian Institute of Technology Guwahati, Guwahati, India
Search for other works by this author on:
Rajiv Tiwari
Rajiv Tiwari
Indian Institute of Technology Guwahati, Guwahati, India
Search for other works by this author on:
Janani Shruti Rapur
Indian Institute of Technology Guwahati, Guwahati, India
Rajiv Tiwari
Indian Institute of Technology Guwahati, Guwahati, India
Paper No:
GTINDIA2017-4615, V002T05A007; 10 pages
Published Online:
February 2, 2018
Citation
Rapur, JS, & Tiwari, R. "A Compliant Algorithm to Diagnose Multiple Centrifugal Pump Faults With Corrupted Vibration and Current Signatures in Time-Domain." Proceedings of the ASME 2017 Gas Turbine India Conference. Volume 2: Structures and Dynamics; Renewable Energy (Solar, Wind); Inlets and Exhausts; Emerging Technologies (Hybrid Electric Propulsion, UAV,..); GT Operation and Maintenance; Materials and Manufacturing (Including Coatings, Composites, CMCs, Additive Manufacturing); Analytics and Digital Solutions for Gas Turbines/Rotating Machinery. Bangalore, India. December 7–8, 2017. V002T05A007. ASME. https://doi.org/10.1115/GTINDIA2017-4615
Download citation file:
31
Views
Related Proceedings Papers
Related Articles
Experimental Time-Domain Vibration-Based Fault Diagnosis of Centrifugal Pumps Using Support Vector Machine
ASME J. Risk Uncertainty Part B (December,2017)
Multifault Diagnosis of Combined Hydraulic and Mechanical Centrifugal Pump Faults Using Continuous Wavelet Transform and Support Vector Machines
J. Dyn. Sys., Meas., Control (November,2019)
Online Diagnostics of Mechanical and Electrical Faults in Induction Motor Using Multiclass Support Vector Machine Algorithms Based on Frequency Domain Vibration and Current Signals
ASME J. Risk Uncertainty Part B (September,2019)
Related Chapters
Boosting Classification Accuracy with Samples Chosen from a Validation Set
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Introduction
Mixed-flow Pumps: Modeling, Simulation, and Measurements
Development and Structure of the German Common Cause Failure Data Pool (PSAM-0020)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)