Generally, Gas Foil Bearings (GFBs) are used in high speed machineries which are quite prone to instability or wear and tear. The current trend is to develop hybrid bearings which has conventional bearing (GFB) along with active magnetic bearing as an electromagnetic actuator (EMA). The GFBs are used for normal operation and the magnetic actuator can be used for the improvement of the stability and the load capacity of the bearing. In the present work a numerical study has been carried out to study the effects of magnetic actuator on the stability of bump type GFB supported rigid rotor. A rigid rotor supported on two identical GFBs with and without EMA has been investigated. The electromagnetic forces are incorporated in the equation of motion to provide the active control. A PD controller has been used as a controller for the magnetic actuator. It has been observed that the incorporation of EMA to the GFB reduces the sub synchronous vibrations and hence increases the stability.

This content is only available via PDF.
You do not currently have access to this content.