A methodology for large eddy simulation (LES) of a turbomachine stage is presented. Computations of mean fields (RANS) of stages may be performed separately of rotor and stator rows by providing an averaged solution as input to the down-stream row. In unsteady simulations, unsteady field information must be exchanged in both directions after every time step. Here a procedure for linear cascade simulations of a stage has been implemented in a high-resolution compressible flow solver for LES. The LES uses an explicit filtering method for sub-grid-scale modelling. Grids overlap at the interface between blade rows. Field data is transferred in both directions. Rotor velocity is added or subtracted as needed to tangential velocity component during this transfer. The relative movement of the rotor and stator grids is accounted for by suitable periodic tangential shifting of the paired grid points in the overlap for the transfer. The method has been tested against a published DNS of a statorrotor stage. The Reynolds number based on blade chord and mean axial velocity at inflow was 40000. Solution fields show the wake vortex street of the upstream blade row impinging on downstream blades and being convected through the downstream blade passage. The LES captured transition on rotor blade surface boundary layers. Blade surface pressure distributions agree closely on pressure surfaces. Separation and transition on downstream blade suction surface is delayed slightly at the present resolution, but this will improve with grid refinement, monotonically, for this LES method.

This content is only available via PDF.
You do not currently have access to this content.