The modern engine has the requirement of high pressure ratio compressors. High diffusion blades are used to cater to this requirement. The high diffusion blades suffer from the low incidence range. A variable geometry inlet guide vane is used to improve the incidence range and to have an increased stable operating range.
In this paper a variable camber inlet guide is proposed in place of an existing inlet guide vane (IGV) to operate the compressor at increased stable operating range or to operate at improved efficiency at off design point. Numerical analysis is carried out in ANSYS CFX©. The existing compressor consists of IGV (20 blades) , rotor (43 blades) and stator (52 blades). The rotor rotates at 2400 rpm in clockwise direction.
The IGV blade is split two part forward blade and aft blade. Numerical studies are conducted to study the effect of varying the stagger angle on the performance of the compressor. The aft blade is given rotation in clockwise direction for +5° and +10°. The numerical results obtained are compared to the same stagger angle with full blades. It is observed that marginal improvement in the pressure ratio and efficiency. 7% stall margin improvement is achieved with slotted blade in place a fixed IGV at 0° setting angle. A new compressor characteristics is estimated which shows that the compressor can be operated to the left of the fixed-IGV-stage peak pressure with high efficiency.